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Imaging through Atmospheric Turbulence

Example of an observed blurred starfield image is given by

g(x, y) = h(x, y) ∗ f(x, y) + ε(x, y), (1)

where h is an essentially unknown blurring kernel, f is the true
image to reconstruct and ε is i.i.d. noise.

h =
∣∣∣F−1 (peiφ(x,y)

)∣∣∣2 , (2)

Bardsley, Jefferies, Nagy, and Plemmons, (2006).
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Hyperspectral Imaging (HSI) through Atmosphere

The acquired image at wavelength λ is

gλ(x, y) = hλ(x, y) ∗ f(x, y, λ) + ελ(x, y), (3)

where the blurring kernel is

hλ =
∣∣∣F−1 (pei(

2π
λ
φ)
)∣∣∣2 , (4)

where φ is the phase function assumed to be known via
wavefront sensing, or through estimation by
multiframe blind deconvolution (MFBD) techniques.
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Simulated HSI Images through Atmosphere
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Compressive Sensing in HSI

A Double-Disperser Coded-Aperture Snapshoft Spectral Imager
(DD-CASSI).

g(x, y) =

∫
λ

Cλ(x, y)f(x, y, λ)dλ. (5)
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Compressive Sensing in HSI

A single snapshot of blurred hyperspectral images by DD-CASSI.
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Note: due to the multiplexing, the DD-CASSI image is worse than the
least-severely blurred image at the longest wavelength, but much better
than the most-severely blurred image at the shortest wavelength.
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Reconstruction from Compressed Measurements

From a single or a few DD-CASSI images of space objects through
atmospheric turbulence, we would like to know the following:

The true hyperspectral object.
Possibly also the blurring kernel, or more specifically, the phase
function.
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Problem Formulation

A single snapshot of hyperspectral images degraded by atmospheric turbulence
is

g(x, y) =

∫
λ

Cλ(x, y)[hλ(x, y) ∗ f(x, y, λ)]dλ+ ε(x, y). (6)

where Cλ(x, y) is the wavelength-dependent coded aperture.

If we discretize the problem, we can write it in a linear form,

g = Af + ε, (7)

where A = (A1,A2 . . . ,Ad), and Aλ = diag(cλ)Hλ, a n2 × n2 square matrix. d
is the number of spectral channels. Due to the multiplication by diag(cλ), we
can no longer compute the operations of Aλ through FFT techniques.

Note: matrix A often has poor compressive sensing properties. Interestingly,
adding the blurring actually improves these properties, i.e., removing Hλ from
Aλ would make the properties of A even worse.
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A Low-Rank Solution Model: Spectral Unmixing

The linear spectral unmixing model:

f(x, y, λ) =
m∑
i=1

si(λ)ui(x, y). (8)

A decomposed form of solution and hence much fewer
parameters.
Positivity and sum-to-one supports are enforced.

Z., Wang, Pauca and Plemmons, (2008).
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Segmentation Model

The parameter-saving segmentation model:

f(x, y, λ) =
m∑
i=1

si(λ)ui(x, y). (9)

And then the system model looks like

g =

∫
λ

Cλ(x, y)[h
φ
λ(x, y) ∗

m∑
i=1

si(λ)ui(x, y)]dλ+ ε(x, y). (10)

Knowns: a coded, blurred and noisy image g, and .
Unknowns: the phase function φ, spectral signatures siλ, and
support functions, ui.
Approach: we take a two-step approach, that is, we estimate the
phase function first and then the hyperspectral object.
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Estimate Phase Function via a Reference Star

If we know the spectrum of a single reference star, then the only
unknown is the phase function, which can be estimated using the
following regularized and convex functional.

J(φ) =
1

2

∥∥∥∥∫
λ

Cλ(x, y)[h
φ
λ(x, y) ∗ s(λ)u(x, y)]dλ− g

∥∥∥∥2
2

+
α

2
〈A−1φ, φ〉.

(11)
where we assume φ is a second-order stationary process with zero
mean, and is characterized by its auto-covariance operator A.
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Estimate Phase Function via a Reference Star

The convex functional J(φ) can be optimized by most optimization
algorithms. Here, we use the limited-memory BFGS algorithm
developed by Bardsley, Nagy,Jefferries, and Plemmons (2006),
which only needs the gradient of the functional.

We can derive the derivative of J against φ, similarly as in Vogel,
Chan and Plemmons (1997),

J′(φ) = 2
∑
λ

Imag[H̃∗λF(h̃λReal(F−1(F∗λR))], (12)

where H̃λ = pei
2π
λ
φ, h̃ = F−1(H̃), Fλ = F(fλ), and R = F(Cλr),

where r is the residual function.
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Estimated Phase Function

Here, we simulate the phase function using the von Karman phase
spectrum,

P(x, y) =
√
.023(D/r0)

5/6(x2 + y2)−11/6. (13)

and φ = P1/2(x, y)W(x, y), where W is the white complex noise.
Due to the random nature of the phase function, we assume the
initial guess is taken from a space centered around the true phase
function, but with a large radius.

φ∗
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Estimation of the Segmented Hyperspectral Object

From now on, we assume the phase function is known as the
estimated φ̂. In the next step, we can estimate the support
functions ui and spectral signatures si.

J(u, s) =
1

2

∥∥∥∥∥
∫
λ

Cλ(x, y)

[
hλ(x, y) ∗

m∑
i=1

si(λ)ui(x, y)

]
− g(x, y)

∥∥∥∥∥
2

2

+ α

m∑
i=1

∫
R2

√
∇2

xui +∇2
yui +

β

2

m∑
i=1

∫
λ

s2i (λ), (14)

where we have the total variation regularization for ui and the
Tikhonov regularization for si.
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Estimation Using the Alternating Approach

Let u = (vec(u1)
T, . . . , vec(um)

T)T, and s = (sT1 , . . . , s
T
m)

T.

At the jth iteration,

1 Given s(j−1), solve for the membership functions u(j).

min
u

TV(u), s.t. A(j−1)
s u = g, (15)

where A
(j−1)
s is a 1×m block matrix, in which the ith block is∑

λ diag(cλ)Hλs
(j−1)
iλ with size n2 × n2.

2 Given u(j), solve for the spectral signatures, s(j).

min
s
‖g −A(j)

u s‖22 + β‖s‖22, (16)

where each column of A
(j)
u is diag(cλ)Hλui.
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Benefits of the Soluion Model: Mutual Incoherence

Before we solve for u, we first compare some matrix properties of As

related to the compressive sensing with those of the original system
matrix A.

First, we compare the distribution of column correlations or coherences.

−0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18
x 10

5 Distribution of Column Coherences in A

−0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
x 10

6 Distribution of Column Coherences in A
s

Peter Zhang and Robert J. Plemmons
Compressive Hyperspectral Imaging of Space Objects



Benefits of the Soluion Model: Restricted Eigenvalue

Definition
A matrix X ∈ Rn×p satisfies the restricted eigenvalue condition over a subset
S with parameters α ≥ 1 and γ > 0 if

‖X4‖2√
n
≥ γ‖4‖2 for all 4 ∈ Rp such that ‖4Sc‖1 ≤ α‖4S‖1. (17)
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Alternating Direction Method of Multipliers (ADMM)

Introducing an auxillary variable v:

min
v

TV(v), s.t. Asu = g and u = v, , (18)

Rewriting with augmented Lagrangian multipliers:

L(u, v,w) = ‖Asu− g‖22 + βTV(v) + wT (u− v) +
α

2
‖u− v‖2. (19)
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Support Function Estimation Using the ADMM

Iteratively, we estimate u, v and w, in the following order,

uk+1 = (AT
s As + αI)−1

[
AT

s g + αvk − wk
]
,

vk+1 = argminv
α

2β
‖uk+1 − v +

1

α
wk‖22 + TV(v),

wk+1 = wk + α
(

uk+1 − vk+1
)
, (20)

where the second problem is solved with the algorithm by
Chambolle (2004).
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A Binary-Star Example
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The Binary-Star Example: Reconstructed u and s

10 20 30

5

10

15

20

25

30

10 20 30

5

10

15

20

25

30

10 20 30

5

10

15

20

25

30

10 20 30

5

10

15

20

25

30

⇒

u
1

10 20 30

5

10

15

20

25

30

0.4 0.5 0.6 0.7 0.8
0.5

0.6

0.7

0.8

0.9

1

s
1

µ m

u
2

10 20 30

5

10

15

20

25

30

0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

s
2

µ m

Peter Zhang and Robert J. Plemmons
Compressive Hyperspectral Imaging of Space Objects



The HST Example: Dense Scene
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(b)

Abbildung : (a) A spectral band of simulated HST image. (b) The simulated
DD-CASSI image of HST through atmospheric turbulence.
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The HST Example: Reconstructed u and s
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Conclusions

We have proposed a two-step semi-blind deconvolution and
spectral unmixing model for reconstructing hyperspectral objects
from compressed measurements of blurred hyperspectral images.
Even though the posed inverse problem is highly challenging, the
model’s success relies on two key factors:

1 The snapshot spectral imager effectively reduced the more
severe blurring effects at lower-wavelength channels through
coding and multiplexing with longer-wavelength channels where
blurring is less severe;

2 The decomposed solution model significantly reduces the
number of unknowns, and improved the system matrix property
to guarantee a better reconstruction success probability.
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